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Blood Flow: Motivations and Modeling

Aortic Flow

Goals
@ Understand blood flow, red cells, cholesterol, the heart...
@ Understand aneurisms, the effects of stents, heart valves...
@ Improve stents

Modeling

@ Fluid-structure interactions with large displacements and contacts in complex
medium!

@ Ignore the medium outside the heart, arteries, blood vessels...
@ Assume perfect Newtonian fluid for the blood.

@ Assume small displacement visco-elastic model for the blood vessels.

[1]F. Usabiaga, J. Bell, R. Buscalioni, A. Donev, T. Fai, B. Griffith, and C. Peskin. Staggered schemes for fluctuating
hydrodynamics. Multiscale Model Sim. 10:1369-1408, 2012.
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Linear Models for the Wall of the Arteries

A hierarchy of approximations for the displacement d of the structure:
o Koiter's linear elasticity shell model: h << 1 with small displacements,
@ + pre-stress and visco-elastic terms T, a, b: empty arteries are flat
@ Assume normal displacement 7 only
o Add damping terms C to account for loss of energy
Then on the mean position ¥ the model reduces to [1] d = 57:

pshdun — N - (CVOm) — V- (TVn) + adn + by = 5, 1,0 given|i—g

* is the external normal force, i.e. —c®%,),.

[1]F. Nobile and C. Vergana, an effective fluid-structure i by generalized robin

conditions. SIAM J. Sci. Comp. Vol. 30, No. 2, pp. 731-763 (2008)
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Surface Pressure Model for the Arteries

e Assuming [h, T, C, a] << b leads to the surface pressure model

Mo, OeNjo given, phdin — N - (TN + Coyen) + adi+bn = 2
Ehrm

A(l—¢2)
A: vessel's cross section, E: Young modulus, £: Poisson coeff. e.g. (MKS)
E =3MPa, ¢£¢=0.3,h=0.001, p' =9.8110° = bh=3.310"ms %> = & =337

of

—0°,, = by, with b=

Gives displacements ~ 0.1 103 m and flow rates ~ 2 10™°m3s~!

[2]L. Formaggia, A. Quarteroni, A. Veneziani (eds), Cardio-Vascular Mathematics Springer MS&A (2009)
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EEE————ec e ing i

Fluid Equations

Navier-Stokes equations in a moving domain Q(t): for all v, q

pf(Ori+u-Vu)+Vp—pAid=0, V-i=0
Continuity on X of velocities : & = A0;7,
Continuity of normal stress : 7 ()H Vu+Vu")—p)i=—c5,:= by
= anT

And tangential stress 77 o}
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Fluid Equations

Navier-Stokes equations in a moving domain Q(t): for all v, q

p (0T +u-Vu)+Vp—pAid=0, V-i=0

Continuity on X of velocities : & = A0;7,
Continuity of normal stress : - (u(Vu+ Vu') —p)i= o5, = by
And tangential stress ?? 05 = o/

ALE Navier-Stokes [1][2]: Assume Q; = A;(Qo) with A: : xo = x¢ 1= A¢(x0).
Let u-(x, t) = u(A:(A71(x)), t), Vx € Q. Then
P L pop
Oilly + (U, — &) - Vi, + Vp—vAi, =0, V:p—, F —p
f

v¢;w,+BCWM<4@:f%Pu&ﬂ@mﬁT

[1] A. Decoene & B. Maury Moving Meshes with freefem++. J. Numer Math (20)3-4, p195-214(2013).

£ lats,

[2] F. Nobile & C. Vergana an effective fluid-structure interaction for lar d

for ly ics by generalized robin

conditions. SIAM J. Sci. Comp. Vol.30,No. 2,731-763, 2009
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Transpiration Conditions for the Fluid

Y, the moving boundary, ¥ a reference bdy: ¥, = {x+nn:x € X}
0

u(x +nn) = nom(x), x €L = u+ 7]0—2 = 10y + o(n) on

Ou _ 1+ Lcoszé)g =

Onat R), =0,V-u=0=>n —
n atorus (r,R), uxn V-u na B

u(x 4+ nn)-n=o(n) :u-n<1+ g(lJr %c0529)) = 0

Hence now the domain is fixed and with precision O(*)

uxn=0and d-7=0monX

CASTS-5-14

O.Pironneau (LJLL) Computational Issues in Hemodynamics

6 /23



Transpiration Conditions for the Fluid

Y, the moving boundary, ¥ a reference bdy: ¥; ={x+ni:x e X}
u(x +nn) = nom(x), x €L = u+ na—u = 10y + o(n) on

uxn=0,V-u=0=n- 8— (1—|——cos 9)—:>

On a torus (r, R), R

u(x 4+ nn)-n=o(n) :u-n<1+ g(lJr %c0529)) = 0

Hence now the domain is fixed and with precision O(*)

uxn=0and d-7=0monX
Remark On a torus (r, R),
nn:p+2(1+7cos29) u-n. Hence 0
u- n—()m/(l—i— (14 L cos?6)), p~ byt 2 ”’(1+ 05?0 — 1y
R RS r
CASTS-5-14
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Energy Balance is Disturbed

Variational Form & Conservation of Energy in a moving domain
/ [0(Ocu+u-Vu—Ff)—pV-0—pV-u+ %(VquVuT) (Vi+Via') =0
Q(t)

An energy conservation is obtained by taking & = u and p = —p,

2 .
at/ ”—+5/\vu+vuﬂ2:/fs.u
an 2 2 Ja Q
2
asat/ u~w:/ at(u-w)—|—/ vu-wand/(uVu)-u:/ u-n—.
Q(t) Q(t) ) Q Fohol 2
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Energy Balance is Disturbed

Variational Form & Conservation of Energy in a moving domain
/ [G(Ocu+u-NVu—Ff)—pV-0—-pV-u+ - (VquVu ): (Vi+Via')] =0
Q(t)

An energy conservation is obtained by taking & = u and p = —p,

8t/ /\VquVuT\z /fs-u
o 2 Q
u? .
asat/ u~w:/ at(u-w)—|—/ vu-wand/(uVu)-u:/ u-n—. Ifwis
) t) 09 Q o9 2

the normal velocity of 99 the variational formulation should be:

/[u (Oru+ uVu)—pV -0 —pV-u +K(Vu+VUT):(Vﬁ+V0T)]
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Variational Formulation with Pressure Conditions

In 1986 it was shown in [1][2] showed that

alu,0) +v(V xu,V x0)= (f,fl)+/ pri,
o

is well posed in Jo(Q) ={ve HY(Q) : V-u=0,v x n|spg =0}

& au—vAu+Vp=1f,V-u=0,uxnlpg =0, plag = pr,
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Variational Formulation with Pressure Conditions

In 1986 it was shown in [1][2] showed that

alu, ) +v(V xu,V x 0)=(f,0) + / prip,
J O

is well posed in Jo(Q) ={ve HY(Q) : V-u=0,v x n|spg =0}
& au—vAu+Vp=1f,V-u=0,uxnlpg =0, plag = pr,

Consequently find [&, p,n] with u x n =0 and Vi, p, 7 with i x n =0,
/[ﬁ-(@tu—uxVxu)—pV-ﬁ—ﬁV-u—i—quu-Vxﬁ]
Q

+/ b[nﬁ~n+ﬁ(u~n78m)]:/prﬁ«né
2Q\T r
Ot —uxVxu+Vp—vAu=0,p=bn,u-n=0morpr=pr

[1] O. Pironneau: Conditions aux limites sur la pression pour les eq. Navier-Stokes. CRAS 303,i, p403-406. 1986.
[2] O. Pironneau: Finite Elements for Fluids. J. Wiley 1989.

[3] C. Conca, F. Murat, O. Pironneau Japan. J. Math, vol 20, No 2, 1994.
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Time discretized Variational Formulation

Then p= by, u= [Adm, = bu-n=0p = p™L —p™ =§6thu™ " - n
/<8tu—u><V><u+Vp)~0+z/V><u-V><0>:0
Q

Variational formulation: Vi € H}(Q)3, p € L3(Q),

g m+l _  m
Q

m+ = ~ ' 1 m+ = ~ ~ m+ 3 m —»
+VV><LI+;~V><U}+ [Su™2 xn-Gxn+d- (u"2bst + p™i)
an €

+/ [hdu - @+ VT CVOu+ u™ 2TV + (a=2(1 + 4 cos® 6)%)deur - 8] = 0
a0
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Time discretized Variational Formulation

Then p = by, u= Ao, = bu-n=0.p = pm™t —pm=tbu™ . n

/(&u—uxVxu+Vp)‘0+z/V><u-V><0>:0
Ja

Variational formulation: Vi € HY(Q)3, p € L?(Q),

m+l _  m
[ (e - v ) Y - e
0 ot

. 1
+oV x u™2 .V x ﬁ} + [Zu™

oa €

1

+ [ [hOxu- &+ Va CVOu+ u™ 2TV + (a—2(

r 2 v A
14+ —=cos”0)—)0:u-ia]=0
29 R )’)t ]

z ><n-ﬁ><n+ﬁ-(um+%b§t+pmﬁ)]

d=umd p=—p = G vie S (Ve R4 boe? [ Ju P
o0

k<m
1

12 2
= [ DD P =)= e+ 0% = 10

RUN
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Potential Blood Flow

By putting i = Vg, p =0, 4 = 0 in the variational formulation,

0
—Ap=0inQ, a*l;\z:*@ru'n-, plr =pr =

9
Ap=0inQ, Ottp+b8—Z:00n Y, = Oupr — bAspy =0

where —Ay is the Steklov-Poincaré op. Resonance at \/bA(_a;)-
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Potential Blood Flow

By putting i = Vg, p =0, 7 =0 in the variational formulation,

0
—Ap=0inQ, a*’;\z:*@tu-n, plr=pr =

9
“Ap=0inQ, dup+ b£ —0onY, = Oupy — bAypy =0

where —Ay is the Steklov-Poincaré op. Resonance at \/bA(_a;)-

Example Blood wave speed v ~ 5m/s. A pressure drop in cos?(knt) gives

resonance in 2 = (0,L) x (0,R) only if L = kmv. Then A\ = so first
v
eigenvalue A\; = 36cm when R=1.3cm and h=0.1cm, leading to b=3.37.
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Implementation with freefem++

t
p(£) = p(0) + bU(t) with U(t) = / u-n(s)ds =U™ = U 4y e
0
m+l _  m
/ [a.(uﬂf”+1 XV xu™) — p"IV G pV Ut
5 5t

+uV><u’"+1~V><ﬁ]+/ [lu’"ﬂ><n~ﬁ><n+bﬁ~r7(um+15t+Um)~r7]:0
on €
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Convergence (paper with T. Chacon et al.)

Lemma If Q is C* or polyhedric and uo € L2(Q)3, po € HY/?(X), then the weak
solution of the continuous problem verifies u € L*(H?), d;u € L*(L?), p € L*(H"), and
uxn=0in L2(LY(X)), &ep = bu - nin L2(HY3(X)), p(0) = po

Theorem The solution of the time discretized variational problem satisfies

n+1
[us]| oo 2y + V7 [[usll 2+ BIISE D 1k - | a(y)
k=1
< ¢ (Nwolloza + —=Ipol
= Uo|l0,2,Q NG PollL2(x)

Theorem If Q is simply connected, 3 subsequence (us/, ps/) which converges to
the continuous problem in L2(W) x H=1(L?) where

W = {(wel?(Q)|Vxwel?Q),V-wel?Q),nxw,_=0}.

Iz
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Simulation of an aortic bend
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CardiacPressure.mp4
Media File (video/mp4)


aortauvwp.mp4
Media File (video/mp4)


Optimal Stents in the Context of Surface Pressure Models

A stent tuned to the patient? e.g. minJ = F(p)dxdt:
b(x) ¥x(0,T)

Subject to S. Canic[1] (with freefem++)
m+1 m
/[A u —u 7um+1XVXum)iperlvhﬁiﬁvluerl]
/1/V><u+ V><u+/(um+1b5t+pmn)-0:f/prﬁn
b r
Vi € Vi, p € Qn with 4 x n|r =0

For instance F = |p|* will minimize the pressure peak on the surface.

[1] J. Tambaca, S. Canic, M. Kosor, R.D. Fish, D. Pani Mechanical Behavior of Fully E: led C ially Availabl
Endovascular Coronary Stents. Tex Heart Inst J 2011; 33(5) 491- 501)
[2]J. Tambaca, M. Kosor, S. Canic, and D. P deling of End lar Stents. SIAM J Appl Math.

Volume 70, Issue 6, pp. 1922-1952 (2010)

[3]S. Canic, J. Tambaca. "Cardiovascular Stents as PDE Nets: 1D vs. 3D." IMA J. Appl. Math. 77(6): pp 748-770, 2012.
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canic.avi
Media File (video/avi)


First order discretization and adjoint

Consider the adjoint state

Vm_vm+1
/[\7~T—\7XV><u’"_1~v'"—u'"+1><V><O-v'"+1
+VV><V"’~V><\7+V€]-V’"7q’"V-\?]+/Otbv 0= /F'(p’”)f]

Jx Ja

ch that ¥ x n =0 on 09.

for all su
ou™, § = 6p™ and summing in m, from 1 to M gives

gs
Letting ¥ =

v,
\’7

M m—1

Z/ "(p )5pm5t_25t/[5u'"-%+quv'"-vmu'"]
1
M
+Z§t
M
+> 6t
1

S~

1 —1 1
(=6u™ x V xu™ VT — ™t XV x ou™ - v™)
Q

S~

(V(Spm-vqumv~6um]+/étbvm-éum)
b
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Optimality Conditions

As 6u® = 0 and by choosing vM = 0 it is also

M-1 g m+l ¢ m
0d = Z 5t/ (meiuTOu + vV x vV x 5um+1>

—1

<

5t/ Su™r x Vo x u™ -vm+u"’+1><V><5um-vm)
Q
m+1

oo ([

°Mf°M

m+1+qm+1v.6um+1]+/

(6tb5um+1 T 5pm+1n) . Vm+1)
X
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Optimality Conditions

As 6u® = 0 and by choosing vM = 0 it is also

M—-1 d m+l ¢ m
0d = Z (5t/ (VméuT()u +uV x vV x 5um+1)
) Q

M—1

o
0
M—1
()
0 JQ

The same is found by linearizing (1) and taking 4 = v™, § = q™, except that
there is an additional term due to db. In fine

. M—1
0 = —ot? / sb (Z umtt vm)
JX 0

/(6um+1><V><um-vm+um+1><v><5um-vm)
Q
[

5pm+1v . vm+1 + qm+1v . 5um+1] + /(6tb5um+1 T 6pm+1n) . Vm+1)

>
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First order discretization of adjoint

Preliminary Computer Experiments

With Pl-bubble/P? and Euler implicit scheme, starting with b=200, after 3
iterations of steepest descent with fixed step size 50, the following is found.

Figure : Extreme left: Optimization criteria versus iteration number. Left: the coefficient
b(x) after 3 iterations. Right: effect of the change of b on the dilatation of the vessel.
Extreme right: a snaptshot of the adjoint pressure.

Preliminary test only, with F = p*; only 10 time iterations with 5t = 0.1. Eventually t
flow is stored on disk at every time step for reuse.
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First order discretization of adjoint

Stent Mesh (by F. Hecht)

Figure : Regions: in (x=0,blue), out (x=L,orange), stent (red), cylinder off stent
(green), buffer before and after (yellow). Dimensions R =1, L = C(N. + Nr + Ny.)

27RLe,
NgHep
direction, Ng = 10 vells in radial direction, N;; = 2 cells before and also after the stent

(buffer). Lo, =2 (resp Hep = 2 is the width (resp height) of the stant cell.

where the length in axial direction of the cell is C; = with N = 8 cells in axial
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First order discretization of adjoint

Preliminary Computer Experiments with Hard Stent

With Pl-bubble/P! and Euler implicit scheme, starting with b=200, after 3
iterations of steepest descent with fixed step size 50, the following is found.

Figure : Extreme left: Optimization criteria f): p* versus iteration number. Left: the
coefficient b(x) after 6 iterations. Right: effect of the change of b on the dilatation of
the vessel. Extreme right: a snaptshot of the adjoint pressure.
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Galerkin - Characteristic Method (1)

Don't upwind or if you do, use this:

U™ (x) — u™(x — a™(x)dt)

8fU + a- VU|X$(m+1)(§t = (5[‘ + O((St)
m+1 _  m

/7 _u &u oX + 0(5t)
with X(x) = Xm(mdt) and
dx m

L XCIS S =), X(m 15t = x
é
x —am(x)dt r

Second order approximation

3u™H(x) — 4u™(x — a™(x)dt) + u™ T ((x — 2a™(x)6t))
26t

_ 3um™t — 4u’"02)(<;;*; + um toX5, + 08
with Xi5:(x) = X (k mét), k=1,2

* m+%

1
1 1
and a* ™2 = 23" — g™

atu +a- Vu‘><,(m+1)5t ~

O.Pironneau (LJLL) Computational Issues in Hemodynamics CASTS-5-14 20 / 23



Galerkin - Characteristic Method (I1)

Zhiyong Si's modified artificial viscosity[1]

[ eu+a-Vu—vAu=0, u(0), ulr given |

m+1 m * m—1 *
3u™2 —4u"oXy5, + u" T 0X5s,

e Step 1 5t —(v+ ah)Au'”% =0
m+1 4 m X>< m—1 X*~
o Step2 Y - "2(;; TU 0%t (4 oh)AU™ + ghAu™E = 0

Theorem After discretization with a finite element method of order k,
|u™t — u™ o < C(6% + W'Y 4+ 62 h* + 5toh)
1
(V{H Sl — u;"“Hg) : < C(68 + h* + oW + Stoh)

And for N.S. (&zjgmupmpm\f < C(5E + W + h? + 6¢%h).

[1] Zhiyong Si. Second order modified method of characteristics mixed defect-correction finite element method for time

depend. Navier-Stokes probl Numer Algor (2012) 59:271-300.
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Galerkin-Characteristics (I11)

Estimates are destroyed by quadrature error | = / up (X (x))wa(x)dx. Only
Q

estimate known is for quadrature at 3 vertices ¢/ of triangle T;

i ; i 2—e¢
123 Y @@ G = o wle < Clhroes T

Jj =123

In practice a Gauss quad of degree 5 works fine. Correction to be exactly
conservative ¢ by J. Rappaz, (also tested with freefem++).

In the end one solve at each time step a generalized Stokes problem independent
of time.

[1] OP and M.Tabata. Stability and convergence of a Galerkin-ch istics finite el h of lumped mass type Int. J.
Numer. Meth. Fluids 2010; 64:1240-1253

[2] J. Rappaz, S. Flotron Numerical conservation sck

for ion-diffusion i (to appear)
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Conclusion and Perspectives

© We have studied mathematically and numerically an FSI algorithm.

@ Study the regularity of p|r for the [u, p]| model (done with
Chacon-Girault-Murat)

© The stability of this Surface Pressure based algorithm is its best asset.
@ It is very well suited to Optimal Shape Design of stents.
Q@ freefem++ is useful for hemodynamics to prototype new ideas.
Many things to do:
© Compare with full model on test cases.
@ A full scale numerical study
@ Validate a Chorin-Rannacher decomposition
Thanks for the Invitation

O.Pironneau (LJLL) Computational Issues in Hemodynamics CASTS-5-14 23 / 23



	Modeling
	 

	Optimal Stents in the Context of Surface Pressure Models 
	 

	First order discretization of adjoint
	Numerical Schemes For Navier-Stokes equations
	 


